安防人上中安网!

关注我们  

安防网 >> 工程方案 >> 其它2

安防智能化解决方案浅析

2012-07-27 08:59:14 来源:CPS中安网 作者: 崔江波 责任编辑: luocaocps 收藏本文
近些年来全国各地的平安城市建设如火如荼得展开,建设思路也逐渐向数字化、网络化、集成化、智能化的方向发展。同时伴随着摄像机的数量的急剧增加,大量路数的视频数据给城市管理者带来极大的挑战,对于操作者来说在监控室有限的视频前长时间发掘潜在的有用信息更显得力不从心。
采用后端软件分析:优点是对网络视频流进行分析,这样不受到标清、高清视频以及某特定一路的限制,可以随时根据需要更换需要分析的视频,方案配置以及系统规划更加灵活方便。通过对软件的升级,可实现对不同场景下的行为分析进行优化,减少误报漏报概率。分析效果以及分析类型相对硬件分析有较高的提升。可实现平台软件对前端视频的后台自动巡检,发现画面质量异常的视频即使报警。不足之处后端处理对于平台软件以及服务器的处理压力提出了更高的考验。由于是对网络视频进行分析,那么对经过编码压缩后的网络视频质量以及传输线路提出了更高的要求。


  业界的大多数厂家普遍采用前端硬件分析方式,这种技术实现方式已较为成熟,同时天地伟业公司已在后端软件平台的处理分析方式上进行了深入开发,行为分析技术更为专业,提供不同用户以更多的选择和组合,并且在同一平台中集成了视频质量的诊断以及智能行为分析两大功能模块,走到了业界视频智能化的前沿。


  在实际工程应用中可能遇到的问题及解决方法


  视频智能化通过这些年发展的已小有成就,涵盖的行为模型以及深入的行业也比较广泛,但远还没达到成熟的地步,从现场应用的方面看,对于事件分析误报、漏报是主要问题所在。应用的环境要求较为苛刻,干扰因素众多,一些因素仍未能够通过技术手段加以避免。


  周围环境对视频分析的影响


  周围环境的很多因素都容易对行为分析的结果造成影响,例如在铁轨沿线安装行为分析设备,用以检测是否有人跨线,进入铁轨危险区域,那么铁轨沿线的树木的影子就容易会对设备造成误报影响。针对此种一方面可以改变摄像机位置,选取树木阴影影响较小的区域,另一方面通过调节参数设置,降低灵敏度,达到最优效果。


  相类似地我们在工程施工过程中需考虑以下几个方面:


  尽量避免逆光,减少强光直射造成的画面亮度过高,细节分辨不清的影响。


  尽量选取周围光线变化较小的场所。


  调节摄像机角度,使得画面获取更多有用信息,而且要避免无谓的画面大幅变化。尽量避免可能存在的遮挡。


  考虑周围场景颜色,应避免场景颜色过于繁杂,画面繁乱。


  要求室内摄像机距地面不宜低于2.5米,不高于5米,室外距地面不宜低于3.5米。避免细节程度过高导致的画面变化过大。


  降低视频源的影响,一方面保障摄像机提供较清晰的视频画面,另一方面在后端处理还要考虑视频压缩损失以及网络传输对网络视频的影响。


  除了以上环境因素的考虑,我们知道夜间的防范也尤为重要,由于夜间的照度低,细节呈现度差,因而我们选用摄像机时要选优先选用具有强光抑制以及低照度的摄像机。为保障夜间的行为分析效果,除了采用低照度摄像机,仍需进行红外补光或者泛光灯补光。除了外界因素还有内在因素产生的影响:


  行为分析算法的优化程度。一方面不同厂家的行为分析算法的差异性会直接导致行为识别的有效率差异,另一方面由于行为分析基于数学模型进行分析,数学模型的建立与实际场景的特这符合度有多大,能够进行可匹配的特征数量多少,匹配特征越多分析准确率就越高,何况实际的每一个场景都具有不同的场景特征等等,都会直接影响分析的准确率。


  对于既定模型的非有用信息干扰一般通过过滤器进行滤除,这种非有用信息考虑得是否全面、非有用信息的模型建立以及识别方式是否得当都会对行为分析的结果造成影响。例如对于人和动物、车辆的区分。较远处的人和较近处的物的区分等等。


  智能行为分析仍需要自学习自适应的过程,对于不同场景的自适应会使得智能行为分析有更好的智能辨别能力。例如下雪天,场景变得复杂,颜色变得单一,自适应优化就显得格外重要。水面监控,水天一色,何从识别。晴天下较为严重的人影与人形的区分。夜间车灯强光的抑制等等。在这一方面,天地伟业的嵌入式行为分析仪对此类场景进行了算法优化,取得了较为理想的分析结果,如下所示。


  1-18下雪天 1-19水面监控1-20强光抑制     1-21夜间红外


  除了软件以及算法上的优化,还有硬件上的因素,如DSP的处理性能,集成电路的设计,服务器CPU的处理能力等等,只有软硬件相结合,具备较为完善全面的数学模型库,才更有利于提高行为分析的准确率。


  未来安防行业智能化这方面的发展趋势


  安防视频智能化的发展方向个人愿抛砖引玉,望引起业界同行的进一步思考:


  视频智能行为分析的分类更加行业化


  由于不同行业对于行为分析的类型要求以及使用场景不尽相同,如监狱环境注重周界防范的跨线以及禁区入侵,监舍内的打架、限高、滞留、突然起立、随意走动等。道路交通环境注重违章停车、行驶轨迹、车牌识别、车流量统计、交通拥堵检测等。广场等公共场所注重人员聚集、突然奔跑、打架、烟火检测等。银行等重要场所注重人员徘回、跟踪、跨线、滞留、物品遗留等。轨道交通注重跨线越界、禁区入侵等等。因而可以看出不同的行业对于视频智能化行为分析的功能需求是有区别的。天地伟业公司借鉴多年的行业化发展经验,在视频智能化的行业化发展上也具有了突出进步,如平安城市、公检法、智能交通等行业都具有了初步的智能化行业区分。因而今后的视频智能行为分析产品也会针对不同的行业做进一步的背景模型优化和特定功能开发。


  后端平台软件检测方式逐渐呈现


  相对于前端嵌入式硬件检测方式,后端的平台软件检测有着自身优势,尤其在如今平安城市建设的数字化、网络化程度越来越高,能够对于高清网络摄像机输出的网络视频流的分析显得尤为重要。并且随着系统集成度的提高,视频智能行为分析这一硬件产品逐渐成为平台软件的一个功能模块已成为平台的一个发展方向。


  视频智能行为将在某一行为类型更加单一化和专业化


  从行为分析的实际应用来看,绝大部分场景均采用了一种行为分析类型,一方面是出于技术本身的限制,另一方面不同的场景有着不同的功能需求,厂家需要考虑的不只是一台设备能够实现更多的分析类型,更应注重对某一种行为分析类型提高它的准确性,降低它在各种环境以及存在环境众多干扰因素情况下的误报率以及提高它对环境的自适应能力。


  从行为类型简单判断向行为动机智能化研判发展


  将来的视频分析智能化程度会越来越高,甚至会将人的逻辑思维模式嵌入到行为分析中去,不仅能对已出现的行为作出初步判断,如跨线、禁区入侵、突然奔跑等行为。还能对行为背后的动机甚至下一步动作作出估计以及判断,真正实现视频智能化分析。


  从单纯的视频行为分析向从视频画面中提取更多有用信息转变


  需求信息才是有用信息,因而在视频智能化发展的方向也是向能够为公安以及其他部门提供更多更有用的隐藏信息,对于哪些信息是我们用户真正关心的,这些信息达到的细节、数量程度以及通过这些信息的综合研判得出什么样的潜在结论和规律,是我们安防厂商推动安防智能化发展的努力方向。


  结语


  总体来看,视频智能化这些年得到了快速发展,逐渐成为了安防行业的一支新生力量,但在看好其发展前景的同时我们要看到它目前在应用中存在的诸多问题,解决这些问题不仅需要在工程施工中细心设计和调试,更需要我们这些安防厂家对智能分析算法进行不断的优化和补充,相信在摄像机数量增加而监控效率降低的矛盾中,视频智能化将作为一枝独秀很好地解决这一大难题。

【想第一时间了解安防行业的重磅新闻吗?请立即关注中安网官方微信(微信号:cpscomcn)——安防行业第一人气微信,万千精彩,千万不要错过!!!

中安网官方微信

关键词安防智能化
提示:试试"← →"实现快速翻页

网友评论

共有0条评论  点击查看全部>>

所有评论仅代表网友观点,与本站无关。

24小时阅读排行

本周阅读排行

订阅邮件
安防速递

每天三个要闻,知晓行业关键

E 周 刊

一周事,一朝知

Email: