1.目标检测将输入的视频图像中变化剧烈的图像区域从图像背景中分离出来,它处于视频监控技术的前端,是各种后续处理的基础。目前,算法主要包括背景减法、相邻帧差法和光流法等。
2.目标分类利用一些图像特征值实现目标类型(一般是人和车)的甄别。用于目标分类的特征有空间特征和时间特征两种,空间特征包括目标轮廓、目标尺寸、目标纹理等,时间特征包括目标大小的变化、运动的速度等。
3.目标跟踪依据目标及其所在的环境,选择能唯一表示目标的特征,并在后续帧中搜索与该特征最匹配的目标位置。常用的跟踪算法包括:基于特征的跟踪算法,基于3D模型的跟踪,基于主动轮廓模型的跟踪以及基于运动估计的跟踪等。
4.智能分析。它位于智能视频监控的高级阶段,是实现视频监控智能化的关键。包括异常检测、身份识别及视频内容理解等:
异常检测中典型的异常包括用户定义的异常情况和非常规事件,检测方法分为基于模型的方法和基于分类器的方法;
身份识别包括人脸识别和步态识别;
视频内容理解是指在对序列进行低级处理的基础上,对场景中的事件进行分析和识别,用自然语言等加以描述。
根据目前智能视频分析技术的成熟度,智能视频监控应用场景主要包括人数统计、车牌识别、事件检测和视频诊断等。
人数统计:统计穿越入口或指定区域的人或物的数量。例如可为商场统计每天的客流量。
车牌识别:识别车辆的形状、颜色、车牌号码等特征,并反馈给监控者。此技术可应用于车辆黑名单追踪。
事件检测:对视频进行周界监测与异常行为分析。异常行为包括双向越界、单向越界、进入禁区、离开禁区、徘徊、无人值守、骤变、人员聚集、烟雾检测、快速运动、逆行、打架等事件。
视频诊断:对视频图像出现的雪花、滚屏、模糊、偏色、画面冻结、增益失衡和云台失控等常见摄像头故障做出准确判断并发出报警信息。该技术可应用于平安城市的建设中,自动检测摄像机的状态,从而减轻维护人员的工作强度。
【想第一时间了解安防行业的重磅新闻吗?请立即关注中安网官方微信(微信号:cpscomcn)——安防行业第一人气微信,万千精彩,千万不要错过!!!
网友评论
共有0条评论 点击查看全部>>24小时阅读排行
本周阅读排行